New Approaches to Highway Safety Analysis

Registration Procedure
1. Please contact Gail Ikeda at 808-956-8367, 808-956-8851 (FAX) or gikeda@hawaii.edu by **Tuesday, July 29, 2008**.
2. Attendance is limited to 40 participants, and preference is given to local government employees.
3. Private company participation is on a space available basis at a fee of $525.

Parking
East-West Center parking passes are available at $4/day ($12 total). If you would like a parking pass please contact us by July 29, 2008.

Payment Method
Payment for parking pass(es) may be combined with registration fees. Payment can be made via Check – payable to the Research Corporation of the University of Hawaii (RCUH), Purchase Order, Credit Card (Visa & MasterCard) or Purchasing Card. Please mail payments to:
Hawaii LTAP
University of Hawaii at Manoa
Dept. of Civil & Environmental Engineering
2540 Dole Street, Holmes Hall 383
Honolulu, HI 96822

Cancellations
Please contact us if you must cancel your registration or if someone will be substituting for you. Refunds will be made if notice is received at least 3 workdays prior to the workshop date.

registration begins at 7:30 a.m.
lunch is not provided.

August 12-14, 2008
8:00 a.m.—4:30 p.m.

East-West Center, Jefferson Hall,
Pacific Room
1777 East West Road
Honolulu, Hawaii
Course Description:

The primary purpose of this course is to help attendees gain an understanding of the Highway Safety Improvement Program (HSIP) process, safety engineering principles and human factors issues related to traffic and road safety. It also provides the participant with an explanation of the latest methods for identifying collision causes and selecting cost-effective safety improvements. Finally, this course will serve as a prerequisite for those who will be utilizing SafetyAnalyst, a set of software tools currently under development that are designed to assist State and local agencies to improve the decision-making process in implementing safety improvement projects.

Course Outcomes:

Upon completion of the course, participants will be able to:

- Describe the components of the Highway Safety Improvement Program (HSIP)
- Explain safety engineering principles relevant to planning for highway safety improvement measures specific to three types of crashes - roadway departures, intersection-related, and pedestrian
- Describe the relevance and impact of human factors in the planning of highway safety improvement measures for three types of crashes - roadway departures, intersection-related, and pedestrian
- Determine strategies for the selection of cost-effective highway safety improvement measures for three types of crashes - roadway departures, intersection-related, and pedestrian

Target Audience:

This course is intended primarily for State DOT staff involved with the Highway Safety Improvement Program, and for FHWA safety specialists. These specialists include engineers, planners, and technicians.

Instructors:

John McFadden
Safety/Geometric Design Engineer for Federal Highway Administration’s Safety/Design National Technical Services Team providing technical support to the FHWA Divisions and states across the country. Provides technical assistance and promote technology deployment in geometric design and safety areas including: incorporating safety in the design of interchanges on the interstate system, statistical methods in highway safety analysis, context sensitive design, roadside design, design and approval of interchanges on the interstate system, and roundabout design. Specializes in the development and presentation of seminars and short courses involving safety and geometric design of roadway issues.

Dr. Susan Chrysler
Dr. Susan Chrysler is a Senior Research Scientist in the Center for Transportation Safety and the Manager of the Human Factors Program. Her areas of expertise include human factors, driver behavior, older driver issues, visual attention, traffic control devices, and photometry. Sue received her Ph.D. in Experimental Psychology, with a minor in Cognitive Science, from the University of Minnesota in 1993. Her bachelor’s degree is also in Psychology from the University of Minnesota.

Since joining TTI in 2001, Dr. Chrysler has led projects on pavement marking and sign design, comprehension, and visibility. She has assisted in handbook development for urban guide signing, managed lanes signing, and pavement markings. She has also worked on projects relating to driver response to geometric design changes. She has led projects on driver distraction due to cell phones and in-vehicle entertainment devices. Her research methods include focus groups, surveys, laboratory comprehension testing, and assessment of driving behavior on the open road and closed-courses. In addition to her research duties, Dr. Chrysler manages the human factors program, the instrumented vehicle, eye-tracker, and the driving simulation laboratory.